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33.1  INTRODUCTION

Nearly two decades ago, Nixon et al. [1] reported a 
significant association between the exercise capacity of 
young Cystic Fibrosis (CF) patients and survival over 
8 years [1]. Nowadays, physical training to increase or 
maintain exercise capacity is implemented in the usual 
care package offered to most patients with CF. In addi-
tion, clinicians encourage patients with CF to perform 
physical exercise to develop age-appropriate fitness 
and to maintain physical fitness in order to preserve or 
enhance: (1) exercise capacity, (2) muscular endurance 
and strength, (3) normally developed and retained bone 
mineral density, (4) a good posture, and (5) maintain or 
improve mobility of the chest wall (International Physio-
therapy Group for Cystic Fibrosis, 2009).

An immediate aim for the young patient is to main-
tain a similar level of exercise in comparison with peers 
and friends. This is likely to influence self esteem and 
the type of everyday life activities. The aim of rehabili-
tating dysfunction is to strive to regain what has been 
lost (International Physiotherapy Group for Cystic Fibrosis, 
2009).

Nevertheless, exercise capacity in patients with CF is 
limited, which seems to have a multifactorial cause [2,3]. 
If there is a possible relationship between CF genotype 
and some measures of exercise capacity, the mechanisms 
remain to be determined [3,4]. It seems that there is an 
interrelationship between lung function, muscle mass, 

energy expenditure, respiratory and/or skeletal mus-
cle function, and exercise capacity in patients with CF 
[5]. The pathophysiology of reduced lung function and 
reduced muscle mass are known to be the most impor-
tant factors leading to exercise limitation [6–8].

The exact mechanisms leading to exercise limitation 
in patients with CF are still a question of debate. The 
objective of this literature review was to give an over-
view of which cardiorespiratory and metabolic deter-
minants are known to play a role in the limited exercise 
capacity in patients with CF. Progressive insight in 
the possible cardiorespiratory and metabolic limiting 
factors might be helpful (1) to understand the physi-
ological mechanisms, and (2) for providing appropriate 
therapeutic interventions such as exercise training in 
patients with CF.

33.2  METHODS

33.2.1  Study Identification

We searched Medline, EMBASE, and CINAHL for 
studies about limiting factors in exercise capacity in 
patients with CF. We used no restriction in time period. 
The search strategy included the terms “Cystic Fibrosis” 
AND “Exercise Capacity” OR “exercise tolerance” OR 
“exercise performance” AND “limiting factor” OR limi-
tation. The databases were searched for the terms in title, 
abstract or both. Titles and abstracts of search results 
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were screened for eligibility. The search strategy and 
search results are available in supplemental appendix I.

33.2.2  Study Inclusion

Studies were eligible for inclusion if they: (1) were 
available as full article (no posters or congress abstracts 
were included), and/or (2) reported effects of interven-
tions on exercise capacity in patients with CF, and/or (3) 
reported associations between exercise capacity and pos-
sible limiting variables in patients with CF.

We used no design and methodological quality 
threshold; the language restriction was English.

33.2.3  Data Extraction

One author (MW) selected potentially eligible studies 
for inclusion by abstract and full articles. Reference lists 
from selected studies were screened for further eligible 
studies meeting the inclusion criteria.

33.3  RESULTS

The search retrieved 38 articles of which 18 met all the 
inclusion criteria. Screening the reference lists of these 
articles revealed an extra 49 articles meeting the inclu-
sion criteria articles of various methodological quali-
ties and study characteristics. No meta-analysis could 
be performed due to the heterogeneity in interventions, 
outcomes, and associations described in the included 
studies (Figure 33.1).

33.4  VENTILATORY PARAMETERS

33.4.1  Ventilatory Constraints

Whether (mechanical) ventilatory constraints con-
tribute to limited exercise capacity has traditionally 
been evaluated by the ventilatory reserve, which reflects 
the relationship of peak minute ventilation (VEpeak) at 
maximal exercise to the estimated maximal voluntary 
ventilation (MVV = 35 × FEV1 (L/min)) [9]. When the 
minute ventilation (VE) exceeds the arbitrary border of 
70% of MVV, a ventilatory limited exercise capacity is 
suggested [9]. Furthermore, exercise dyspnea, assessed 
by the Borg scale, which is closely related to the level 
of ventilation as expressed by the VE/MVV ratio, was 
found to have an influence on exercise performance [10]. 
However, ventilatory demand and ventilatory capac-
ity are dependent on multiple factors as lung function, 
anatomical dead space ventilation, respiratory muscle 
function, and ventilatory control [9]. Furthermore, 
Moorcroft et al. [11] found that VE/MVV exceeded the 
70% border only in severe patients with CF (FEV1 < 40% 
of predicted), suggesting that ventilatory factors only 
contribute to exercise limitation in severe disease state 
[11,12]. Furthermore, medicinal effective bronchodila-
tion in ventilatory-limited patients with moderate CF 
(FEV1 58 ± 17% of predicted) [13] and antibiotic therapy 
[14] showed no effect on exercise capacity, suggesting 
that the subjects in the studies were not truly ventilatory 
limited or that the primary determinant of ventilatory 
limitation may not be bronchoconstriction alone [13,14]. 
Additionally, increasing deadpsace (VD) during exercise 
to volitional exhaustion in mild patients with CF (FEV1 
76 ± 8% of predicted) did not induce changes in cardio-
pulmonary exercise parameters or subjective measures 
of exhaustion. This suggests that these mild patients still 
have an adequate ventilatory reserve to overcome added 
VD and implies that mild patients with CF are not pri-
marily ventilatory limited [15]. Additionally, a group of 
patients with CF followed longitudinally had an annual 
decline (2.7% of predicted) in lung function (FEV1) and 
exercise capacity (decrease of VO2peak 0.162 mL/min kg 
per month) only when FEV1 fell below 80% of predicted 
[16]. This indicates that ventilatory constraints play a 
role in limiting exercise capacity in a more progressive 
disease state.

Although lung function at rest, as determined by 
the FEV1 or inspiratory capacity, was a longitudinal 
and cross-sectional determinant of exercise capacity 
[6,8,10,16–18], it seems that the presence of static hyper-
inflation (ratio between residual volume and total lung 
capacity (RV/TLC) > 30% after bronchodilator) in ado-
lescents with CF by itself does not strongly influence 
ventilatory constraints during exercise. This could sug-
gest that static hyperinflation is only a slightly stronger 
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FIGURE 33.1  Result literature search.
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predictor of exercise capacity than the FEV1 (% of pre-
dicted), which only reflects the degree of airflow obstruc-
tion and does not account for ventilatory mechanisms at 
maximal exercise as dynamic hyperinflation [19]. Thin 
and coworkers [20] have shown that wasted ventilation 
depends on a higher VD and on the ventilatory pattern 
during exercise, specifically, a high breathing frequency 
and a low tidal volume [20].

Furthermore, in contrast to other work [21], lung 
function independent measurements such as severity of 
bronchiectasis, sacculations, and abscesses are shown to 
be independent predictors of exercise capacity in patients 
with CF. Some authors have noted stronger correlations 
between exercise capacity and CT findings than between 
exercise capacity and FEV1 or body mass index [22,23].

33.4.2  Exercise-Induced Hypoxemia

Progressive lung disease in CF, which involves thick, 
dehydrated, mucus-impairing airway mucociliary clear-
ance, predisposes the patient to recurrent bronchial infec-
tions, inflammation, and airway obstruction [24,25]. As a 
consequence, lung disease in CF develops from bronchi-
olitis to bronchitis, and eventually to bronchiectasis [26]. 
During exercise in the presence of severely impaired pul-
monary function (FEV1 % of predicted 31.1 ± 12.4%), an 
increased physiological VD and arterio-venous shunting 
results in ventilation-perfusion mismatching, contribut-
ing to the development of hypoxemia [27]. Addition-
ally, CF patients are reported to have a reduced alveolar 
membrane diffusion capacity (DLCO) at rest [28,29], and 
also a limited, exercise-induced increase in DLCO [29]. 
During exercise, pulmonary blood flow increases, which 
is not adequately met by an increased DLCO in the study 
of [29], leading to a drop in O2 saturation. The authors 
suggested that this limitation in increasing DLCO in the 
alveoli is the consequence of a reduction in alveolar ven-
tilation during exercise.

A Cochrane review about O2 therapy for patients with 
CF pointed to evidence of modest enhancement of exer-
cise capacity and duration with O2 supplementation, 
especially in participants with more advanced lung dis-
ease [30,31]. O2 supplementation was accompanied by 
a lower VEpeak and HRpeak, suggesting that decreasing 
or preventing exercise induced hypoxemia might pre-
vent the occurrence of cardiac or ventilatory constraints 
as the primary limiting factors [31]. Further, the major 
findings of a study by McKone et al. [32] in moderate to 
severe adult patients with CF indicate that stressing the 
respiratory system with added dead space impairs exer-
cise capacity (exercise duration to voluntary exhaustion) 
with no change in VEpeak and the peripheral measured 
O2 saturation, suggesting that exercise was limited by the 
ventilation reaching its maximal capacity. Supplemental 
O2 with added dead space caused a small improvement 

in exercise capacity with an increase in VEpeak. These 
results suggest that arterial hypoxemia is a limiting fac-
tor during maximal exercise in adult patients with CF 
by decreasing O2 availability to exercising muscles or 
inducing the sensation of dyspnea associated with arte-
rial hypoxemia [32]. Furthermore, hypoxemia is a par-
tial explanation for the observed slowed oxygen uptake 
kinetics in the skeletal muscle in patients with CF [33].

33.5  MUSCLE FUNCTION

33.5.1  Muscle Weakness

Compared with healthy controls, reduced periph-
eral muscle strength has been found in patients with 
CF [34–39], which was found to be significantly corre-
lated with BMI and FEV1 [34,35]. Moreover, peripheral 
muscle strength was even lower when corrected for 
fat free mass (FFM) and was found to be of contractile 
origin [39]. However, although the systemic inflamma-
tion in patients with CF is suggested to be related with 
reduced muscle force [37], it does not seem to be an 
independent predictor of respiratory and limb muscle 
strength [40].

Whether inspiratory muscle weakness is present or 
not in CF patients, remains controversial. Inspiratory 
muscle strength, as reflected by PImax, is found to be 
relatively well preserved [41] or even higher compared 
with healthy peers [38] in stable adult patients with 
CF, although there is a relationship (r .370; p < 0.05) 
between the loss of inspiratory muscle work capacity 
and FFM. On the other hand, other studies found lower 
PImax values in patients with CF [42,43]. Furthermore, 
loss of FFM [41] and hyperinflation [44] are associated 
with the loss of diaphragm muscle strength. The higher 
PImax values were ascribed to a conditioning effect on 
the inspiratory muscles, as WOB is increased in patients 
with CF [38]. In addition, inspiratory muscle endurance 
may be reduced in CF patients and is strongly related to 
exercise dyspnea. However, inspiratory muscle endur-
ance limitation was independent of nutritional status, 
ventilatory obstructive defect, pulmonary hyperinfla-
tion, inspiratory muscle strength, or maximal exercise 
capacity [45].

Hence, as it is still questionable whether inspira-
tory muscle training can improve exercise capacity 
[46], the role of inspiratory muscle weakness alone as a 
limiting factor in exercise capacity in patients with CF 
remains unclear. On the contrary, unloading the inspi-
ratory muscles by overnight, noninvasive ventilation in 
hypercapnic patients with CF showed improvement in 
exercise capacity compared with placebo-controls, sug-
gesting that a nocturnal reduction in the WOB might 
lead to improved exercise capacity during the day [47]. 
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This finding might still indicate a role of the inspiratory 
muscles in limiting exercise capacity in patients with CF.

33.5.2  CF Specific Mitochondrial Dysfunction

Compared with healthy controls, study findings indi-
cate that the efficiency of oxidative work performance of 
skeletal muscle in patients with CF is reduced by 19–25% 
[48]. A decrease in mitochondrial function secondary to 
clinical or nutritional factors may be the explanation 
for this finding [48]. However, until 2010, the CFTR 
had not been shown to be expressed in human skeletal 
muscles. Recently, the expression of CFTR has been dem-
onstrated in human skeletal muscle, and its localization 
in the sarcotubular network [49,50]. Additionally, using 
31Phosphorus magnetic resonance spectroscopy, recent 
literature showed a slower phosphocreatine (PCr) recov-
ery time after 90 s of intense exercise in patients with CF 
and in patients with primary cilliary dyskinesia [51]. 
This points towards a possible intrinsic abnormality in 
mitochondrial oxidative metabolism; however, currently 
there is no firm evidence available [33,48,52–54]. Fur-
thermore, as similar exercise physiology has been found 
between patients with CF and non-CF bronchiectasis 
[54], it is still questionable if the possible mitochondrial 
impairment may be CF specific or suggestive of a non-
specific effect of chronic systemic inflammation, as pres-
ent in patients with CF and primary cilliary dyskinesia 
[51]. In conclusion, it remains unclear whether an intrin-
sic abnormality in muscle energy metabolism is present 
in CF [3,54], or whether the exercise physiology of CF 
skeletal muscles is hampered due to impaired O2 deliv-
ery to these muscles [34,52].

33.5.2.1  Oxidative versus Glycolytic Energy 
Metabolism

Boas et  al. [55] investigated aerobic and anaero-
bic exercise capacity in children with CF (n = 25, FEV1 
92.5 ± 17.1% of predicted), children with asthma (n = 22, 
FEV1 100.3 ± 17.7% of predicted), and healthy controls 
(n = 23, FEV1 110.1 ± 8.3% of predicted). They found a 
similar aerobic and anaerobic exercise capacity among 
the three groups; however, children with CF used a 
lower percentage of their VO2peak during each phase 
of anaerobic exercise testing. They applied mathemat-
ical modeling on the exercise data in order to clarify 
this result, which, compared to children with asthma 
and healthy controls, suggests the preferential use of 
the phosphocreatine/adenosine triphosphate (PCr/
ATP) and glycolytic energy systems compared with oxi-
dative pathways. In addition, Klijn et al. [6,8] reported 
a higher anaerobic power output normalized for FFM 
in patients with CF and moderate lung disease (n = 19, 
FEV1 62.9 ± 14.2% of predicted) than in patients with 
CF and mild lung disease (n = 20, FEV1 99.2 ± 10.6% of 

predicted). Their results indicate that with progressive 
lung disease, there is a shift from oxidative to glycolytic 
energy metabolism during exercise. In children with 
asthma, it was suggested that reduced aerobic capac-
ity might be compensated for by a maintained or even 
enhanced anaerobic capacity [56], leading to enhanced 
CO2 production during exercise. This phenomenon 
could explain the higher respiratory exchange ratios 
(VCO2/VO2) at rest and during submaximal exercise in 
patients with CF [3,48,52].

33.5.3  Nutritional Status

CF has detrimental effects on the patient’s nutritional 
status and thereby induces malnutrition. Malnutrition 
can lead to the loss off body fat and FFM with muscle 
mass as the main part of it [57]. For instance, diaphrag-
matic performance declines as nutritional status, evalu-
ated on the basis of BMI, decreases [44]. Indeed, peak 
anaerobic capacity [7,58], maximum work capacity 
[59,60] and, to a lesser extend, aerobic capacity [6,8,59] 
are found to be related with FFM. Additionally, low FFM 
is associated with the observed lower peak heart rate 
[57] and stroke volume (SV) [61] at maximal exercise in 
patients with CF, which is explained by the lower muscle 
mass performing the work leading to a decreased cardio-
vascular load [42] and output [61].

33.6  CARDIAC CONSTRAINTS

More than 20 years ago, a decreased SV was found in 
malnourished patients with CF [61], which might have 
been caused by the occurrence of both right and left ven-
tricular dysfunction during stress, without clinical signs 
or symptoms [62]. However, this impaired SV was indi-
rectly measured using the Fick equation, and thus could 
not provide distinction in involvement of right ventricu-
lar (RV) or left ventricular (LV) dysfunction [61].

A postmortem study showed evidence of RV hyper-
trophy of 70% in children with CF [63]. Florea et al. [64] 
and Ionescu et  al. [65] confirmed the presence of sig-
nificant RV systolic and diastolic dysfunction in clinical-
stable and nonclinical-stable patients with CF. This RV 
dysfunction may be caused by pulmonary hypertension, 
secondary to chronic hypoxemia [66,67], by the chronic 
inflammation as present in patients with CF [65] or by 
ventilatory mechanics as airflow limitation, leading to 
increased intrathoracic pressure [66]. Contrary to what 
was previously suggested, a decreased SV during exer-
cise could not be ascribed to hyperinflation of the thorax 
[54]. The increase in the intrathoracic pressure caused 
by the thoracic hyperinflation would limit the extent to 
which the Frank-Starling mechanism could be recruited 
to maintain SV in the face of an increased RV afterload 
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[66]. This lower SV could not be compensated for by an 
increase in heart rate, resulting in impaired blood flow 
to the lungs [54].

Overall, secondary RV enlargement develops in a 
proportion of patients with CF via pulmonary hyper-
tension and pulmonary vascular remodeling. The exact 
prevalence of subclinical RV dysfunction in the popula-
tion is unknown, but prognosis is poor once RV failure 
is evident [68]. Although involvement of LV dysfunction 
in patients with CF remains subject to debate [64,69,70], 
there is evidence for involvement of LV dysfunction 
[68]. This LV dysfunction could be caused be a regional 
LV myocardial perfusion deficit due to hemodynamic 
changes secondary to pulmonary hypertension and 
RV hypertrophy. A dysfunctional LV seems not to be of 
major importance in mild disease state, but, next to other 
previously mentioned factors, may become clinical evi-
dent in more progressive disease state in patients with 
CF, where a LV dysfunction could limit cardiac output 
during exercise [71].

33.7  CONCLUDING REMARKS

In patients with mild-to-moderate disease, nonpulmo-
nary factors, as muscle mass and muscle function, pre-
dominate in limiting exercise capacity [11,12]. In more 
severe patients with CF (FEV1 < 40% of predicted), ven-
tilatory (mechanical) constraints and hypoxemia become 
more important determinants. However, in any state of 
progression of CF, none of these factors are the main limit-
ing factor, suggesting that other factors, such as a possible 
CF specific muscle defect, and/or systematic inflamma-
tion, independent of the severity or progression of CF, are 
attributing to exercise limitation. This might result in spe-
cific, unique individual combinations of factors that limit 
exercise capacity in separate patients with CF.

33.8  CLINICAL IMPLICATIONS

The unique, individual combinations of factors 
that limit exercise capacity in patients with CF would 
implicate that exercise training in each patient should 
focus on different goals and indications. These indica-
tions are not only interindividual dependent, but are 
also dependent on disease progression and exercise 
induced limitations. These distinctive, interindividual 
characteristics require detailed cardiopulmonary exer-
cise testing prior to the initiation of exercise training in 
order to provide the patients with CF with safe training 
recommendations [72].

In a less severe, mild to moderate disease state of CF, 
when nonpulmonary factors predominate in limiting 
exercise capacity, the focus of exercise training should 

emphasize prevention of the deterioration of lung 
function by focusing on optimizing chest mobility and 
airway clearance techniques [73]. Furthermore, general 
training programs should focus on peripheral muscle 
function according to the general ACSM Guidelines  
for exercise testing and prescription. (ACSM Guidelines 
for exercise testing and prescription.)

When ventilatory limitations become predominant, 
besides optimizing chest mobility and airway clear-
ance techniques, the focus should be decreasing WOB 
by inspiratory muscle training [74]. Additionally, local 
peripheral muscle oxidative capacity could be stabi-
lized or even improved by more intermittent, local, 
peripheral muscle training as high-intensity interval 
training (HIT), with less burden on the ventilatory 
system [75,76].

As stated in the Cochrane review about exercise train-
ing for cystic fibrosis, the benefits obtained from physi-
cal training may be influenced by the type of training. 
Further research is needed to understand the (physi-
ological) benefits of exercise programs in people with 
cystic fibrosis, and the relative benefits of the addition 
of aerobic versus anaerobic versus a combination of both  
types of physical training to the care of people with cys-
tic fibrosis [77]. Overall, there should be no such form of 
“one size fits all principle” in patients with CF, and tai-
lored care should be the policy in the domain of exercise 
training.
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